ELECTRIDGLASS

The Specialists in Electric Glass Melting and Conditioning

1976-2023

47 Years Specialist Engineering to the Glass Industry

14th AIGMF International Conference on: "Decarbonization for the Sustainable Glass Industry" (Sept 15, 2023)

ENERGY EFFICIENCY : A MAJOR FACTOR IN A CARBON NEUTRAL FUTURE.

Grahame Stuart Project Sales Engineer

Energy efficiency is called the "first fuel" in clean energy transitions, as it provides some of the quickest and most cost-effective CO_2 mitigation options while lowering energy bills and strengthening energy security.

Energy efficiency is the single largest measure to avoid energy demand in the "Net Zero Emissions by 2050 Scenario", along with the closely related measures of electrification, behavioural change, digitalisation and material efficiency.

SOURCE International Energy Agency – Tracking Energy Efficiency 2023

According to the International Energy Agency

Energy efficiency will contribute 37% of what is required to reach Net Zero Emissions by 2050.

Renewable energy will contribute 32% of what is required to reach Net Zero Emissions by 2050.

SOURCE International Energy Agency – Tracking Energy Efficiency 2023

Combining ENERGY EFFICIENCY and RENEWABLE ENERGY with well-designed, proven all-electric forehearth technology will help you reach net-zero in your glass conditioning now.

- All-electric distributor & forehearth technology is not new
- Considered by many as suitable for volatile glasses
- Long proven for container glass conditioning
- Typically, 85-90% more energy efficient than gas heated systems
- Offering energy cost savings of up to 90%.

Operational Comparison - Gas Heated vs Electroflex All-Electric Forehearths

Pull - 50 tonnes/day

Temperature Drop - 90°C

Heat Loss From Glass – 80 kW

Gas Heated Forehearth

All-Electric Forehearth

12 kW/day

775 m³/day @8350kCal/m³ **Energy Consumption**

7524 kWh/day* *based on 860kCal/kWh

390 kW

Energy Consumption in kWh

Total Structural Losses

288 kWh/day

50 kW

Operational Comparison - Gas Heated v. Electroflex All-Electric

• 87% Reduction in overall losses

Operational Comparison - Gas Heated v. Electroflex All-Electric

- 87% Reduction in overall losses
- 90% Reduction in operating COST

Operational Comparison - Gas Heated v. Electroflex All-Electric

- 87% Reduction in overall losses
- 90% Reduction in operating COST
- £744,600.00 Saving over a 10-year campaign
- Zero reliance on fossil fuels and Zero emissions at site

Understanding All-electric Forehearth Design Concept Differences

- Gas heated designs heavily modified to operate with heating elements, dry electrodes or a combination of both.
- Designs specifically developed for all-electric operation.

Modified Gas Heated Designs

- Burner systems for stand-by/emergency use.
- Superstructure refractory and insulation packages better suited to evacuating waste gases than promoting efficient operation.
- Few large damper openings.
- Forced air cooling systems.
- Heated by dry electrodes or a mixture of dry electrodes and radiant heating elements.

Modified Gas Heated Design Using Dry Electrodes

The Risk of Glass Reboil – Understanding Energy Release

How we perceive energy is released between pairs of electrodes connected across the forehearth channel.

How energy is actually released between pairs of electrodes connected across the forehearth channel.

The Risk of Glass Reboil

The Electroflex All-Electric Forehearth

Dry Electrode Usage

- Electrodes limited to conditioning zone only.
- Only used where low transmission glasses are to be produced.
- Very low/minimal power input.
- Circuit designed to promote side to side heating.
- Utilise temperature setpoint control to assist in gob shape and weight stability.

Simple Dry Electrode Design

Simple Dry Electrode Design

The Electroglass Sheathed Dry Electrode Design

Calculating Capital Investment Costs & Operating Cost Savings

						GILA			
		Foreh	earth G	as-to-El	ectric C	onversio	on Data	Sheet	
		To enable	e us to pre	pare an o	perating c	ost compa	rison and	quotation	
	for conv	version of	your exist	ing gas fo	rehearth t	to an Elect	roglass el	ectric forel	hearth,
			pl	ease prov	ide the fol	llowing da	ta		
Company	name								
Contact na	ame								
Email add	ress								
Foreheart	h designat	ion							
Scheduled	d date of ne	ext repair							
Estmated	cost of nex	kt repair (te	o existing o	lesign), ex	cluding				
giass conta	act channe	I DIOCKS.			L				
<								\rightarrow	
. [_	
↑									
w P		11						¹²	
¥ –									
				-					
	Length L			Channel	Width W		Glass	Depth	
		Туріс	al operatin	g conditio	ns, - existi	ng gas fore	hearth		
	Days per year at this pull. (RATIO)	Glass Colour	Pull Tonnes/ Day	Inlet Temp. T1 Deg C	Entry Temp. T2 Deg C	Gas Consumption		Combustion and	
Case								Power Consumptic	
						Quantity	Units	Quantity	Units
1					8-				kW
2									kW
3									kW
4									kW
5									kW
		I							
E	inergy Cost	ts	Cost	Unit					
E	inergy Cost Gas	ts	Cost	Unit					

- Determining energy consumptions, operating COST savings, capital investment costs and payback times is a quick process.
- Electroglass Data Sheet makes it easy to provide information required.
- Operating energy COST savings ranging from 70% to more than 90% - often worthwhile looking at a range of forehearths and distributors to determine where best to place any investment.

CASE 1

Pull - 60 tonnes/day

Temperature Drop - 53°C

Gas Heated Forehearth

All-Electric Forehearth

504 m³∕day	Energy Consumption	46 kW/day	
4893 kWh/day	Energy Consumption (kWh)	1104 kWh/day	
289 kW	Total Structural Losses	85 kW	

- **70.6% Reduction** in overall losses
- 94.2% Reduction in operating COST
- \$3,171,141 Saving over a 10-year campaign

CASE 2

Pull - 85 tonnes/day

Temperature Drop - 64°C

Gas Heated Forehearth

All-Electric Forehearth

840 m³⁄day	Energy Consumption	13 kW/day 312 kWh/day	
8156 kWh/day	Energy Consumption (kWh)		
402 kW	Total Structural Losses	62 kW	

- 84.6% Reduction in overall losses
- 98.7% Reduction in operating COST
- \$4,328,900.00 Saving over a 10-year campaign

CASE 3

Pull - 130 tonnes/day

Temperature Drop - 20°C

Gas Heated Forehearth

All-Electric Forehearth

960 m³∕day	Energy Consumption	60 kW/day 1440 kWh/day	
9321 kWh/day	Energy Consumption (kWh)		
478 kW	Total Structural Losses	89 kW	

- **81.3% Reduction** in overall losses
- 90.3% Reduction in operating COST
- **\$7,424,246.00 Saving** over a 10-year campaign

Conversion During Furnace Campaign

www.electroglass.co.uk

ELECTROGLASS

info@electroglass.co.uk

Grahame Stuart Project Sales Engineer

The Specialists in Electric Glass Melting and Conditioning

W: www.electroglass.co.uk E: info@electroglass.co.uk T: +44 1268 565577